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LETTER TO THE EDITOR 

Low density free energy of two-dimensional real matter 

C Deutsch 
Laboratoire de Physique des Plasmas?, Universitk Paris-Sud, 91405 Orsay, France 

Received 24 March 1980 

Abstract. The canonical thermodynamics of the system of electrons interacting with nuclei 
in a plane, through the r - l  potential, is investigated within the mean field (Debye) theory. 
The free energy per particle in the high dilution ( p  + 0) limit behaves as ~ B T A ( A  In A + B ) .  

We consider the thermodynamics of the two-dimensional and two-component elec- 
tron-ion system interacting in a plane via the three-dimensional Coulomb law r - l .  

This two-dimensional model of real matter is of considerable intrinsic interest, in 
view of its relevance to semiconductor physics (metal-oxide sandwiches) (Stern and 
Howard 1967) and controlled fusion physics (behaviour of the pellet surface in the 
energy transfer process). 

We intend to pay particular aitention to the thermodynamics of this system in the 
high-dilution and high-temperature limits, where k g  T is comparable to or not much 
smaller than the hydrogen binding energy. 

Our purpose is to compare the present results with those already known for the 
corresponding one-component plasma (OCP) model (Chalupa 1975, Totsuji 1976). 

In view of the important technical difficulties associated with the adaptation of the 
OCP nodal expansion in A = 4np e4(kBT)-’ of the canonical thermodynamics to the 
two-component plasma (TCP), we shall start from another perturbative formulation 
where the unperturbed state is the perfect gas of N non-interacting neutral pairs rather 
than the perfect gas of 2N charges of either sign (Baer 1970). This alternative approach 
stresses the distinction (Lebowitz et al 1965) between the residual weak long-range 
interaction for particles pertaining to distinct atoms, and the strong short-ranged 
quantum interaction within a pair of like charges. 

In the present scheme, the Debye approximation appears as a long-range resum- 
mation of the r - l  interaction between charges located on distinct atoms. In diagram- 
matic language, the only change from the OCP resummation (Deutsch 1978) is the 
replacement of a particle vertex by a neutral pair vertex at each field (nodal) point. 

In the small p range, one can therefore compute (Baer 1970) the pair correlationsfme 
from the zero-order distribution f : e  for a pair of charges at two distinct positions and 
two imaginary times: 0 c T d p = (kBT)-’,  with the translational molecular motion 
factorised out (a, p = e,  i). fp, and fie are 7-independent. We also neglect the 7- 

dependence of f i e .  So, we get f i e  =E, which amounts to neglecting all effects of 
instantaneous charge fluctuations inside the ‘atoms’ on the interaction among them, 
The divergence at T -* CO of f l  = f i e  - Tr(e-PH), can be avoided by noticing that the f i e  
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are zero-order approximations to the intra-atomic correlations. The self-correlations 
at 7 = 0 are 

f i i  =fee = P S ( ~ ) .  (1) 
It then remains to compute f e i ( r ) .  At 7 = 0, the& represent the zero-order terms of the 
pair correlation functions Fa@ ( r ) .  

Following the Baer convention, we represent fo lp  graphically by a big circle with two 
root points labelled by CY and p. Dropping one or two of the labels corresponds to a 
diagrammatic representation of 

respectively, where e, is the electric charge on the CY th particle. The resummation of the 
Coulomb tail is now monitored by convolution chains of alternate f functions (big 
circles) and - l / r  functions (lines), with f a  and f p  at the two ends of the chain. Every 
‘black’ (intermediate) point represents an integration over space coordinates, and every 
pair of black end-points of a line represents an additional integration over a 7 variable. 
Every ‘white’ (root) point represents a fixed space coordinate and value. The formal 
summation of the chain diagrams can be obtained from f ( k ) ,  the Fourier transform of 

For this purpose, it is convenient to introduce the sum of the four binary correlations 
f ( r ) .  

F(r)  = C euepFoP ( r ) .  
,.P 

The Debye procedure thus yields 

where we make use of 27~/k, the Fourier transform of r-’. p“ follows from the 
7-integration in the nth chain. From equation (1) one obtains 

Ei = Fee, F = 2e2(Ei -Ee) .  (4) 

f ( r )  = 2peZ(S(r) -PqLIS(&), ( 5 )  

The large-r behaviour of F ( r )  is obtained from 

where qw = p/27$h2 with p the electron-ion reduced mass, while S ( r )  = (rle-PHlr) is 
the atom Slater sum. Splitting up the Hamiltonian in S ( r )  into the kinetic and the 
potential parts, H = Ho -Ze2/r, we take the two parts as commutable for large r, so that 

(6) 

Asymptotically, S ( r ) ,  = q,(pze’/r). This expression is valid for r >> max(p e2, 

r-a3 lim S ( r )  = (rlexp(-PHo)lr) exp(pze2/r) = qlr exp(pZe’r-l). 

h / ( 2 ~ p k , T ) ” ~ ) .  Using equation (12) in equation (ll),  we obtain for this r range 

f ( r )  = S ( r ) / p  -PZ e’/r. (7) 

p ( k )  is thus obtained as (K = 47rpp e*) 

1 ( K - 3 k )  
P (k-Ko)(k 

E ( k )  =-+SI+ e2 
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where 2Ko=K(&-1)  and 2Ks = K ( & + l ) .  Equation (8)  is then valid for k<< 
( p  e’)-’ and K << (p  e’)-’, i.e. when A<< 1 or p + O  and T + m .  When these two 
requirements are fulfilled, equation (8) may be safely taken as a reliable approximation 
in the whole k range. 

F(r)  = W ) / 2 7 r p  + N - - 3 / r  + ( H o ( K o ~ )  +No(Kor))Koa (KO) + ( H o ( K s ~ )  

Taking the principal part of the Fourier integral yields 

-No(Ksr))Kscu (Ks)l (9) 
in terms of the Struve function Ho(x) and the Neumann function No(x) with KO and KS 
now in number of K, and r in K - ’ ,  while 

a (KO) = ~ ( 5  - 3&)/2&, a (Ks)  = ~ ( 5  + 3&)/2&, 

and the asymptotic behaviour 

This last result is typical of the present ‘molecular’ approach (Deutsch 1975) with an 
unscreened long-ranged oscillatory tail (Baer 1970). However, as in three dimensions, 
the canonical internal energy 

E/NkBT = aA[&a(Ko) +Kscu(Ks)) + (2/&)(1+&) In A +  (2 /&-  ~ ) ( Q T  -In 2) ]  
( 1 1 )  

does not depend on this dipole-like oscillatory contribution to F(r).  Equation ( 1  1 )  is 
qualitatively analogous to its OCP homologue (Totsuji 1976). 
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